AN ANTHRAQUINONE GLYCOSIDE FROM RHAMNUS PALLASII*

MAKSUT COŞKUN, NEVIN TANKER, AKIYO SAKUSHIMA,† SHIZUKA KITAGAWA† and SANSEI NISHIBE†

Faculty of Pharmacy, University of Ankara, Ankara, Turkey, †Faculty of Pharmaceutical Sciences, Higashi Nippon Gakuen University, Ishikari-Tobetsu, Hokkaido, 061-02, Japan

(Revised received 9 December 1983)

Key Word Index—*Rhamnus pallasu*, Rhamnaceae, α-sorinin, anthraquinone glycoside, physcion-8-*O*-β-primeveroside, 1,8-dihydroxy-3-methyl-6-methoxy-anthraquinone-8-*O*-β-primeveroside

Abstract—A new anthraquinone glycoside, together with α -sorinin, has been isolated from the bark of Rhamnus pallasii and its structure elucidated as physcion-8-O- β -primeveroside

INTRODUCTION

In a previous paper [1], we reported the isolation of a new dihydroflavonol, pallasiin, and seven known flavonoids from the bark of *Rhamnus pallasii* Fisch et May We now report on the isolation of a known naphthalide, α -sorinin (1), and a new anthraquinone glycoside, physcion-8-O- β -primeveroside (2) from the same source

RESULTS AND DISCUSSION

Compound 1 was identified by direct comparison with α -sorinin isolated from the bark of R japonica Maxim [2] To the best of our knowledge this is only the second report of the occurrence of α -sorinin in Rhamnaceae

Compound 2 was recrystallized from methanol to give fine orange needles, mp 258–261°, FDMS m/z 601 ([M]⁺ (C₂₇H₃₀O₁₄)+ 23 Na) Its IR spectrum showed absorption bands at 3425, 1635, 1600, 1320, 1265, 1220 and 1080 cm⁻¹ in potassium bromide, and its UV spectrum showed maximum absorption at 222 5 (4 52), 269 (4 39), 277 (4 38) and 416 (3 94) nm (log ε) in methanol, and 266 and 442 nm with addition of sodium hydroxide solution

Acetylation of 2 with acetic anhydride-pyridine gave the peracetate 3 as pale yellow fine needles (from ethanol), mp 221-223°, $[\alpha]_D^{20} - 60.5^{\circ}$ (CHCl₃) The ¹H NMR

spectrum of 3 showed the presence of six alcoholic acetoxy groups ($\delta 2$ 03, 2 08 and 2 10), a phenolic acetoxy group ($\delta 2$ 52), an aromatic methoxy group ($\delta 3$ 97) and an aromatic methyl group ($\delta 2$ 46)

Acid hydrolysis of 2 gave physcion (4), which was identical with an authentic sample The presence of D-glucose and D-xylose in the hydrolysate was shown by TLC and GC

The mass spectrum of 3 contained significant peaks at the m/z values shown in Fig. 1. Those at m/z 547, 259 and 159 suggested the presence of a peracetylxylopyrano-glucosyl moiety. The location of the O-glycosyl substituent in 2 was established as C-8 by correlation of the chemical shifts of the nuclear protons in the ¹H NMR spectrum of 3 with those of physicion-8-O- β -glucoside (physicionin) peracetate [3] and physicion-8-O- β -gentiobioside peracetate [4] (Table 1)

In the ¹³C NMR spectrum of 2, the ca 7 ppm downfield chemical shift at C-6 carbon (glc-6) of the glucosyl moiety relative to that of glucose suggested the attachment of the xylosyl moiety at the C-6 carbon of glucose. The $1 \rightarrow 6$ linkage in the xylopyrano-glucosyl moiety of 1 had been established by the fact that the physical properties of the disaccharide obtained from 1 by mild hydrolysis and of its phenylosazone were in good agreement with those of synthetic primeverose (xylopyranosyl- $(1 \rightarrow 6)$ -O- β -glucopyranose) [2, 5] The glycosyl moiety of 2 was shown to be primeverose by correlation of the chemical shifts of its carbon atoms in the ¹³C NMR spectrum of 2 with those of the primeverosyl moiety of 1 (Table 2)

1

2 $R^1 = primeverosyl, R^2 = H$

3 $R^1 = (Ac)_6$ primeverosyl, $R^2 = Ac$

4 $R^1 = R^2 = H$

Fig 1

Table 1 Chemical shifts of nuclear protons in ¹H NMR spectra of physicion glycoside peracetates

Peracetates	H-2 (s, br)	H-4 (s, br)	H-5 $(d, J = 2.5 \text{ Hz})$	H-7 (d, $J = 25 Hz$)
Physcion-8-O-β-primeveroside (2)	7 13	7 88	7 45	6 97
Physcion-8-O-β-glucoside*	7 13	7 90	7 43	6 92
Physcion-8-O-β-gentiobioside†	7 19	7 95	7 50	7 00

^{*}Synthesised from physicion and α -acetobromglucose, mp 164–165°, $[\alpha]_D^{20}$ – 37 2° (CHCl₃)

Table 2 13C NMR data

Physcion moiety of 2		Primeverosyl moiety			
C		C	2	1	
1	164 7	glc-1	100 4	99 8	
2	119 2	glc-2	73 2	73 2	
3	1470	glc-3	758	76 0	
4	124 1	glc-4	69 4	69 7	
5	108 3	glc-5	75 8	76 0	
6	160 5	glc-6	678	67 8	
7	1070	xyl-1	1040	104 1	
8	161 6	xyl-2	73 2	73 2	
9	186 3	xyl-3	76 2	76 3	
10	181 7	xyl-4	69 4	69 3	
11	136 3	xyl-5	65 5	65 5	
12	1069				
13	1144				
14	131 9				
OMe	560				
Me	21 2				

Consequently, the structure of 2 has been established as physcion-8-O- β -primeveroside (1,8-dihydroxy-3-methyl-6-methoxy-anthraquinone-8-O- β -primeveroside) This is the first report of the occurrence of a physcion diglycoside in Rhamnaceae

EXPERIMENTAL

¹H NMR 90 MHz, CDCl₃ with TMS as int standard, ¹³C NMR 15 MHz, DMSO- d_6 , MS direct inlet, 70 eV, ion source temp 200°, GC glass column (3 mm × 1 m), 1 5% OV-1 on shimalite-W (80–100 mesh), column temp 140–190° (3°/min), injection and detector temp 280°, carrier gas N₂ (20 ml/min)

Plant material R pallasu was collected on Sept 1980 at Artvin near Ardanuc, Turkey A voucher specimen is retained in 'Ankara Universitesi Eczacilik Fakultesi Herbaryume' (AEF No 7173)

Isolation Dry powdered bark (100 g) was extracted (\times 3) with MeOH. The concentrated extract plus H_2O was extracted successively with Et_2O , $CHCl_3$, EtOAc and BuOH, and the BuOH extract chromatographed on a silica gel column developed with a $CHCl_3$ -MeOH gradient. The fractions were monitored by TLC developed with $CH_3COC_2H_5$ -EtOAc-HCOOH- H_2O - C_6H_6 (4 3 1 1 2, upper layer). The fractions showing a TLC spot

[†]From ref [4]

at R_f 0.26 were concentrated to afford crude 2, whilst those showing a TLC spot at R_f 0.09 were concentrated to afford crude

α-Sorinin (1) Colourless fine needles from EtOH, mp 159–163° IR $\nu_{\text{max}}^{\text{KBr}}$ cm⁻¹ 3300 (OH), 1720 (chelated CO), 1630, 1610 (arom C=C), 1060, 1030; UV $\lambda_{\text{max}}^{\text{EIOH}}$ nm (log ε) 219 (3 55), 250 (4 09) sh, 257 (4 24), 348 (3 36), UV $\lambda_{\text{max}}^{\text{EIOH}}$ + NaOH nm 241, 264, 365, ¹H NMR (DMSO- d_6) δ3 84 (3H, s, MeO), 4 16 (1H, d, J=7 Hz, anomeric H), 5 06 (1H, d, J=7 Hz, anomeric H), 5 26 (2H, s, lactone CH₂), 7 00 (1H, d, J=3 Hz, arom H), 7 03 (1H, d, J=3 Hz, arom H), 7 22 (1H, s, arom H)

Acid hydrolysis of physcion-8-O- β -primeveroside (2) Compound 2, in 10% H_2SO_4 soln, was heated on a water bath for 1 hr then cooled The mixture was extracted with CHCl $_3$ The CHCl $_3$ layer was washed and evaporated to dryness The residue was purified by prep TLC (C_6H_6) to give 4 The aq layer was neutralized with BaCO $_3$ and the precipitate was filtered off The filtrate was evaporated to dryness, and the residue was examined by TLC and GC for the presence of D-glucose and D-xylose

Physcion (4) Dark orange needles from CHCl₃, mp $207-210^{\circ}$ (Found [M]⁺ at m/z 284 0678, C₁₆H₁₂O₅ requires 284 0683) IR v_{max}^{KBr} cm⁻¹ 1625, 1490, 1370, 1320, 1275, 1220, 1160,

UV $\lambda_{\text{max}}^{\text{EIOH}}$ nm (log ϵ) 223 5 (4 41), 254 (4 14), 264 (4 16), 286 (4 14), 433 (3 99), UV $\lambda_{\text{max}}^{\text{EIOH}+\text{NaOH}}$ nm 212, 229, 255, 304, 503, ¹H NMR (CDCl₃) δ 2 42 (3H, s, Me), 3 87 (3H, s, MeO), 6 57 (1H, d, J=2 5 Hz, H-7), 7 00 (1H, s (br), H-2), 7 26 (1H, d, J=2 5 Hz, H-5), 7 53 (1H, s (br), H-4)

Acknowledgements—We are grateful to Dr H Ina, Tokyo College of Pharmacy, for FD mass spectral data and to Assistant Professor S Yamanouchi, Department of Pharmacy, College of Sciences and Technology, Nihon University, for mass spectral data

REFERENCES

- 1 Sakushima, A, Coşkun, M, Hisada, S and Nishibe, S (1983) Phytochemistry 22, 1677
- 2 Nikuni, Z (1938) J Agric Chem Soc Japan 14, 352
- 3 Steglich, W and Losel, W (1969) Tetrahedron 25, 4391
- 4 Holzschuh, L, Kopp, B and Kubelka, W (1982) Planta Med 46, 159
- 5 Helferich and Rauch (1927) Ann 455, 168